115Vac 400Hz Capacitors - COG/NPO, X7R

115Vac 400Hz capacitors for aerospace applications

Knowles has conducted reliability testing on standard surface mount ceramic capacitors in order to ensure their performance at 115Vac 400Hz and the associated voltage and frequency transients required by MIL-STD-704. Self heating will occur due to losses in the capacitor but has been measured at less than 25°C rise with neutral mounting conditions at room temperature.

115Vac 400Hz Capacitors - minimum/maximum capacitance values

	0805	1206	1210	1808	1812	2220			
Dielectric	Maximum capacitance values								
COG/NP0	1pF - 330pF	1pF - 1.5nF	3.9pF - 3.9nF	4.7pF - 3.9nF	10pF - 10nF	10pF - 15nF			
X7R	100pF - 4.7nF	100pF - 18nF	100pF - 39nF	100pF - 39nF	150pF - 82nF	220pF - 100nF			

Ordering information - 115Vac 400Hz Capacitors

1206	Y	A12	0103	J	Х	т
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging
0805 1206 1210 1808 1812 2220	$\label{eq:product} \begin{split} \mathbf{Y} &= FlexiCap^{TM} \\ termination base with nickel barrier \\ (100\% matte tin plating). \\ RoHS compliant. \\ \mathbf{H} &= FlexiCap^{TM} \\ termination base with nickel barrier \\ (Tin/lead plating with min. 10\% lead). \\ Not RoHS compliant. \\ \mathbf{J} &= Nickel barrier \\ (100\% matte tin plating). \\ RoHS compliant. Lead free. \\ \mathbf{A} &= Nickel barrier \\ (Tin/lead plating with min. 10\% lead). \\ Not RoHS compliant. 10\% lead). \\ \mathsf{Not RoHS compliant. Not RoHS compliant. \end{split}$	A12 = 115Vac	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0103 = 10nF	$\begin{array}{c} <4.7 pF\\ H=\pm 0.05 pF\\ B=\pm 0.10 pF\\ C=\pm 0.25 pF\\ D=\pm 0.50 pF\\ \hline\\ >4.7 pF & <10 pF\\ B=\pm 0.10 pF\\ C=\pm 0.25 pF\\ D=\pm 0.50 pF\\ \hline\\ >10 pF\\ F=\pm 1\%\\ G=\pm 2\%\\ J=\pm 5\%\\ K=\pm 10\%\\ M=\pm 20\%\\ \end{array}$	C = COG/NP0 X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays

