A range of chip capacitors, available in sizes 0805 to 7565, designed to operate from -55°C to 150°C, (Class 2 dielectric) and from -55ºC to 200ºC (COG & Class II dielectrics). Voltage ratings of 25V to 4kV.

- For dielectric characteristics see pages 4 & 7.
- For dimensions see page 12.
- For termination options see pages 3 & 15.
- For ordering information, inc. tolerances available, see page 15.

Note: Maximum capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF.

<table>
<thead>
<tr>
<th>Size</th>
<th>0805</th>
<th>1206</th>
<th>1210</th>
<th>1515</th>
<th>1808</th>
<th>1812</th>
<th>1825</th>
<th>2225</th>
<th>4540</th>
<th>500V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min cap.</td>
<td>121</td>
<td>221</td>
<td>221</td>
<td>221</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>222</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>25V</td>
<td>563</td>
<td>184</td>
<td>334</td>
<td>684</td>
<td>125</td>
<td>155</td>
<td>565</td>
<td>156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50V</td>
<td>473</td>
<td>154</td>
<td>274</td>
<td>564</td>
<td>105</td>
<td>125</td>
<td>475</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100V</td>
<td>333</td>
<td>104</td>
<td>184</td>
<td>394</td>
<td>824</td>
<td>105</td>
<td>395</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250V</td>
<td>183</td>
<td>333</td>
<td>823</td>
<td>154</td>
<td>474</td>
<td>564</td>
<td>275</td>
<td>695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500V</td>
<td>562</td>
<td>153</td>
<td>393</td>
<td>563</td>
<td>124</td>
<td>154</td>
<td>125</td>
<td>325</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For dielectric characteristics see pages 4 & 7.
For dimensions see page 12.
For termination options see pages 3 & 15.
For ordering information, inc. tolerances available, see page 15.

Note: Maximum capacitance values are shown below as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF.
Chip Ordering Information

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Case Size</th>
<th>Dielectric</th>
<th>Capacitance</th>
<th>Capacitance Tolerance</th>
<th>Voltage</th>
<th>Termination</th>
<th>Special Thickness</th>
<th>High Reliability Testing</th>
<th>Packaging</th>
<th>Marking</th>
<th>High Reliability Test Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX</td>
<td>1206</td>
<td>N</td>
<td>472</td>
<td>J</td>
<td>101</td>
<td>X050</td>
<td>H</td>
<td>T</td>
<td>M</td>
<td>HB</td>
<td></td>
</tr>
</tbody>
</table>

Capacitance Code
1st two digits are significant, third digit denotes number of zeros, R = decimal
Examples:

1R0 = 1.0pF
120 = 12pF
471 = 470pF
102 = 1,000pF
273 = 0.027µF
474 = 0.47µF
105 = 1.0µF

Voltage Code
1st two digits are significant, third digit denotes number of zeros. For example:

160 = 16 Volts
101 = 100 Volts
501 = 500 Volts
102 = 1,000 Volts
502 = 5,000 Volts
103 = 10,000 Volts

Termination Codes
- P: Palladium Silver
- PR: Palladium Silver*
- K: Solderable Palladium Silver*
- N: Nickel Barrier* 100% tin
- Y: Nickel Barrier 90% tin, 10% lead
- NG: Nickel Barrier Gold Flash*
- C: FlexiCap™/Nickel Barrier* 100% tin
- D: FlexiCap™/Nickel Barrier 90% tin, 10% lead
- B: Copper Barrier* 100% tin
- E: Copper Barrier 90% tin, 10% lead
- S: Silver*

* Indicates RoHS terminations

Prefix Definitions
- None: Standard chip
- RF: Improved ESR Capacitor p. 23
- LS: Y³ Certified Safety Capacitor p. 42 - 43
- ES: Y³ Certified Safety Capacitor p. 42 - 43
- ST: Stacked Capacitor Assembly p. 48 - 53
- SM: Stacked Hi-Rel Capacitor Assembly p. 48 - 53
- CR: Cap-Rack Capacitor Array p. 54
- RC: Bleed Resistor p. 58 - 61

Dielectric Codes
- N: C0G/NP0 Ultra Stable
- M: C0G/NP0 Ultra Stable Magnetic Free
- F: C0G/NP0 High Temp. (up to 160°C)
- D: C0G/NP0 High Temp. (up to 200°C)
- K: R3L Ultra Stable
- R: R2D Pulse Energy
- Y: Y5V General Purpose
- Z: Z5U General Purpose
- B: X7R Stable
- C: X7R Stable Magnetic Free
- X: BX MIL
- S: X8R High Temp. (up to 150°C)
- E: Class II High Temp. (up to 200°C)
- G: Class II High Temp. (up to 160°C)
- W: XSR Stable
- RN: Lead free C0G/NP0 Ultra Stable
- RB: Lead free X7R Stable
- BB: X7R BME Stable
- BW: XSR BME Stable

Dielectric Codes
- RN: Lead free C0G/NP0 Ultra Stable
- RB: Lead free X7R Stable
- BB: X7R BME Stable
- BW: XSR BME Stable

Special Thickness
None

X: Denotes a special thickness other than standard. Specify in inches if required. (As shown above X = 0.050”)

Packaging
- None
- Bulk
- T: Tape & Reel
- W: Waffle Pack

Marking
- None
- Unmarked
- M: Marked

Hi-Reliability Testing Criteria
- None
- Standard product
- H: High Reliability Testing
- H: High Temp Screening

Capacitance Tolerance Codes
- Code: COG/NP0, R3L, R2D, Y5V, Z5U, X7R, BX, X8R, Class II, XSR
- Tolerance: ±0.10pF, ±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20%, ±80%, ±100%

Capacitance Tolerance Codes

Prefix Definitions

Capacitance Tolerance Codes

High Reliability Testing Criteria

www.novacap.com | Phone: +1.661.295.5920 | 15
Technical Information
Novacap provides application notes throughout this catalog as a guide to chip selection and attachment methods. Refer to the Novacap Technical Brochure found at www.novacap.com for more details. This technical information includes the nature of capacitance, dielectric properties, electrical properties, classes of dielectrics, ferroelectric behavior, test standards, and high reliability test plans. Please do not hesitate to contact the sales office for any product or technical assistance.

Capacitor Size
Size availability is based primarily on capacitance values and voltage rating. Smaller units are generally less expensive. Because mass affects the thermal shock susceptibility of chip capacitors, size selection should consider the soldering method used to attach the chip to the board. Sizes 1812 and smaller can be wave, vapor phase, or reflow soldered. Larger units require reflow soldering.

Chip Selection
Multilayer capacitors (MLC) are categorized by dielectric performance with temperature. The Temperature Coefficient of Capacitance describes the variance of capacitance value with temperature. The choice of components is therefore largely determined by the temperature stability required of the device and the size necessary for the desired capacitance value and voltage rating.

Packaging
Units are available reeled, in waffle pack, or bulk packaged. Bar coded labels are standard for reeled and bulk packaging.

Primary Dielectric Types
COG/NP0:
Ultra stable Class I dielectric, with negligible dependence of capacitance on temperature, voltage, frequency, and time. Used in circuitry requiring very stable performance.

X7R:
Stable Class II dielectric, with predictable change in properties across a temperature range of -55°C to +125°C. Used as blocking, decoupling, bypassing, and frequency discriminating elements. This dielectric is ferroelectric and provides higher capacitance than Class I materials.

BX:
The military specification for ceramic chip capacitors (MIL-PRF-55681) defines a mid-K stable dielectric designated as BX. The BX specification has voltage temperature limits in addition to temperature limits of capacitance. The BX dielectric is limited to ±15% maximum change in capacitance between 25°C and -55°C or +125°C and also has a voltage restriction of +15% / -25% maximum change in capacitance between 25°C and -55°C or +125°C at rated voltage.

ZSU/Y5V:
General purpose Class III dielectrics with higher dielectric constant and greater variation of properties over temperature and voltage. Very high capacitance per volume is attainable for general purpose applications where stability over a wide temperature range is not critical.

Dielectric Termination Combinations

<table>
<thead>
<tr>
<th>Dielectric</th>
<th>Code</th>
<th>P</th>
<th>PR</th>
<th>K</th>
<th>N</th>
<th>Y</th>
<th>NG</th>
<th>C</th>
<th>D</th>
<th>B</th>
<th>E</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>COG/NP0</td>
<td>N/RN</td>
<td></td>
</tr>
<tr>
<td>R3L</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>X7R</td>
<td>B/RB</td>
<td></td>
</tr>
<tr>
<td>X7R BME</td>
<td>BB</td>
<td></td>
</tr>
<tr>
<td>X5R BME</td>
<td>BW</td>
<td></td>
</tr>
<tr>
<td>BX</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y5V</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>ZSU</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>COG/NP0 (Mag free)</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>X7R (Mag free)</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>X8R</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>COG/NP0 (160°C)</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>COG/NP0 (200°C)</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Class II (160°C)</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Class II (200°C)</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Pulse Power</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>R2D</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Termination Material
We recommend the following termination types:

- **Solder Attachment:**
 - N Nickel Barrier, 100% matte tin plated - RoHS
 - C FlexiCap™ with Nickel Barrier, 100% tin plated - RoHS
 - Y Nickel Barrier, tin-lead plated
 - D FlexiCap™ Nickel Barrier, tin-lead plated
 - B Copper Barrier 100% matte tin plated - RoHS
 - E Copper Barrier, tin-lead plated
 - K Solderable Palladium Silver - RoHS (suitable for conductive epoxy attach)
 - S Solderable Silver - RoHS

- **Conductive Epoxy attachment:**
 - P Palladium Silver
 - PR Palladium Silver - RoHS
 - NG Nickel Barrier Gold Flash - RoHS (suitable for soldering attach)
C0G/NP0 (N) Ultra Stable and RoHS 2013 (RN) type

- **Operating temperature range:** -55°C to 125°C
- **Temperature coefficient:** 0 ±30 ppm/°C
- **Dissipation factor:** 0.1% max @ 25°C
- **Insulation resistance @25°C:** >1G W or >10 W F whichever is less
- **Dielectric withstand voltage:** ≤200V: 250%
 201-500V: 150% or 500V whichever is greater
 >500V: 120% or 750V whichever is greater
- **Ageing rate:** 0% per decade
- **Test parameters:** 1KHz, 1.0 ±0.2 VRMS, 25°C

C0G/NP0 (M) Ultra Stable Non Magnetic

- **Operating temperature range:** -55°C to 125°C
- **Temperature coefficient:** 0 ±30 ppm/°C
- **Dissipation factor:** 0.1% max @ 25°C
- **Insulation resistance @25°C:** >1000 W F or >10000 W F whichever is less
- **Dielectric withstand voltage:** ≤200V: 250%
 201-500V: 150% or 500V whichever is greater
 >500V: 120% or 750V whichever is greater
- **Ageing rate:** 0% per decade
- **Test parameters:** 1KHz, 1.0 ±0.2 VRMS, 25°C

C0G/NP0 (F) Ultra Stable High Temperature (up to 160°C)

- **Operating temperature range:** -55°C to 160°C
- **Temperature coefficient:** 0 ±30 ppm/°C
- **Dissipation factor:** 0.1% max @ 25°C
- **Insulation resistance @25°C:** >1G W or >10 W F whichever is less
- **Dielectric withstand voltage:** ≤200V: 250%
 201-500V: 150% or 500V whichever is greater
 >500V: 120% or 750V whichever is greater
- **Ageing rate:** 0% per decade
- **Test parameters:** 1KHz, 1.0 ±0.2 VRMS, 25°C

C0G/NP0 (D) Ultra Stable High Temperature (up to 200°C)

- **Operating temperature range:** -55°C to 200°C
- **Temp. coefficient @200°C:** 0 ±30 ppm/°C
- **Dissipation factor @ 25°C:** 0.1% Max.
- **Insulation resistance @25°C:** >1G W or >10 W F whichever is less
- **Dielectric withstand voltage:** ≤200V: 250%
 201-500V: 150% or 500V whichever is greater
 >500V: 120% or 750V whichever is greater
- **Ageing rate:** 0% per decade
- **Test parameters:** 1KHz, 1.0 ±0.2 VRMS, 25°C
X7R (B) Stable and RoHS 2013 (RB) type

Operating temperature range: -55°C to 125°C

Temperature coefficient: ±15% ΔC Max.

Dissipation factor
- >25V rating: 2.5% max
- ≤25V rating: 3.5% max

Insulation resistance:
- @25°C: >1000Ω or >1000μF whichever is less
- @125°C: >10kΩ or >100μF whichever is less

Dielectric withstanding voltage
- ≤200V: 250%
- 201-500V: 150% or 500V whichever is greater
- >500V: 120% or 750V whichever is greater

Ageing rate: <2.0% per decade

Test parameters: 1KHz, 1.0 ±0.2 VRMS, 25°C

X7R (C) Stable Non Magnetic

Operating temperature range: -55°C to 125°C

Temperature coefficient: ±15% ΔC Max.

Dissipation factor
- >25V rating: 2.5% max
- ≤25V rating: 3.5% max

Insulation resistance:
- @25°C: >1000Ω or >1000μF whichever is less
- @125°C: >10kΩ or >100μF whichever is less

Dielectric withstanding voltage
- ≤200V: 250%
- 201-500V: 150% or 500V whichever is greater
- >500V: 120% or 750V whichever is greater

Ageing rate: <2.0% per decade

Test parameters: 1KHz, 1.0 ±0.2 VRMS, 25°C

BX (X) Stable

Operating temperature range: -55°C to 125°C

Temperature coefficient: ±15% ΔC Max.

Temp-voltage coefficient: +15% -25% ΔC Max.

Dissipation factor
- >25V rating: 2.5% max
- ≤25V rating: 3.5% max

Insulation resistance:
- @25°C: >1000Ω or >1000μF whichever is less
- @125°C: >10kΩ or >100μF whichever is less

Dielectric withstanding voltage
- ≤200V: 250%
- 201-500V: 150% or 500V whichever is greater
- >500V: 120% or 750V whichever is greater

Ageing rate: <2.0% per decade

Test parameters: 1KHz, 1.0 ±0.2 VRMS, 25°C

X8R (S) Stable

Operating temperature range: -55°C to 150°C

Temp. coefficient ≤150°C: ±15% ΔC Max.

Dissipation factor
- >25V rating: 2.5% max
- ≤25V rating: 3.5% max

Insulation resistance:
- @25°C: >1000Ω or >1000μF whichever is less
- @150°C: >10kΩ or >100μF whichever is less

Dielectric withstanding voltage
- ≤200V: 250%
- 201-500V: 150% or 500V whichever is greater
- >500V: 120% or 750V whichever is greater

Ageing rate: <2.0% per decade

Test parameters: 1KHz, 1.0 ±0.2 VRMS, 25°C
Class II (G) Stable High Temperature (up to 160°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>-55°C to 160°C</td>
</tr>
<tr>
<td>Temperature coefficient up to 160°C</td>
<td>+15% -30% ±ΔC Max.</td>
</tr>
<tr>
<td>Dissipation factor @ 25°C</td>
<td>2.5% Max.</td>
</tr>
<tr>
<td>Insulation resistance @ 25°C</td>
<td>>1000GΩ or >10000MΩF whichever is less</td>
</tr>
<tr>
<td>Insulation resistance @ 160°C</td>
<td>>1GΩ or >10MΩF whichever is less</td>
</tr>
<tr>
<td>Dielectric withstanding voltage</td>
<td>250%</td>
</tr>
<tr>
<td>Ageing rate</td>
<td>< 2.0% per decade</td>
</tr>
<tr>
<td>Test parameters</td>
<td>1KHz, 1.0 ±0.2 VRMS, 25°C</td>
</tr>
</tbody>
</table>

Class II (E) Stable High Temperature (up to 200°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>-55°C to 200°C</td>
</tr>
<tr>
<td>Temperature coefficient up to 200°C</td>
<td>+15% -30% ±ΔC Max.</td>
</tr>
<tr>
<td>Dissipation factor @ 25°C</td>
<td>2.5% Max.</td>
</tr>
<tr>
<td>Insulation resistance @ 25°C</td>
<td>>1000GΩ or >10000MΩF whichever is less</td>
</tr>
<tr>
<td>Insulation resistance @ 200°C</td>
<td>>1GΩ or >10MΩF whichever is less</td>
</tr>
<tr>
<td>Dielectric withstanding voltage</td>
<td>250%</td>
</tr>
<tr>
<td>Ageing rate</td>
<td>< 2.0% per decade</td>
</tr>
<tr>
<td>Test parameters</td>
<td>1KHz, 1.0 ±0.2 VRMS, 25°C</td>
</tr>
</tbody>
</table>

X5R (W) Stable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>-55°C to 85°C</td>
</tr>
<tr>
<td>Temperature coefficient up to 200°C</td>
<td>±15% ±ΔC Max.</td>
</tr>
<tr>
<td>Dissipation factor @ 25°C</td>
<td>5% Max.</td>
</tr>
<tr>
<td>Insulation resistance @ 25°C</td>
<td>>10GΩ or >5000MΩF whichever is less</td>
</tr>
<tr>
<td>Dielectric withstanding voltage</td>
<td>250%</td>
</tr>
<tr>
<td>Ageing rate</td>
<td>< 5.0% per decade</td>
</tr>
<tr>
<td>Test parameters</td>
<td>1KHz, 1.0 ±0.2 VRMS, 25°C</td>
</tr>
<tr>
<td>Except: 22µF, 47µF & 100µF</td>
<td>120KHz, 0.5 ±0.1 VRMS, 25°C</td>
</tr>
</tbody>
</table>
Chip Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>Length (L)</th>
<th>Width (W)</th>
<th>Max. Thickness (T)*</th>
<th>Termination Band (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0402</td>
<td>0.040 ± 0.004 (1.02 ± 0.102)</td>
<td>0.020 ± 0.004 (0.508 ± 0.102)</td>
<td>0.024 (0.610)</td>
<td>0.010 ± 0.006 (0.254 ± 0.152)</td>
</tr>
<tr>
<td>0504</td>
<td>0.050 ± 0.006 (1.27 ± 0.152)</td>
<td>0.040 ± 0.006 (1.02 ± 0.152)</td>
<td>0.044 (1.12)</td>
<td>0.014 ± 0.006 (0.356 ± 0.152)</td>
</tr>
<tr>
<td>RF0505</td>
<td>0.055 +0.015 -0.010 (1.4 ±0.38 -0.25)</td>
<td>0.055 ± 0.015 (1.40 ± 0.381)</td>
<td>0.057 (1.45)</td>
<td>0.014 ± 0.006 (0.356 ± 0.152)</td>
</tr>
<tr>
<td>0603</td>
<td>0.060 ± 0.006 (1.52 ± 0.152)</td>
<td>0.030 ± 0.006 (0.762 ± 0.152)</td>
<td>0.035 (0.889)</td>
<td>0.014 ± 0.006 (0.356 ± 0.152)</td>
</tr>
<tr>
<td>0805</td>
<td>0.080 ± 0.008 (2.03 ± 0.203)</td>
<td>0.050 ± 0.008 (1.27 ± 0.203)</td>
<td>0.054 (1.37)</td>
<td>0.020 ± 0.010 (0.508 ± 0.254)</td>
</tr>
<tr>
<td>0907</td>
<td>0.090 ± 0.008 (2.29 ± 0.203)</td>
<td>0.070 ± 0.008 (1.78 ± 0.203)</td>
<td>0.060 (1.52)</td>
<td>0.020 ± 0.010 (0.508 ± 0.254)</td>
</tr>
<tr>
<td>1005</td>
<td>0.100 ± 0.008 (2.54 ± 0.203)</td>
<td>0.050 ± 0.008 (1.27 ± 0.203)</td>
<td>0.054 (1.37)</td>
<td>0.020 ± 0.010 (0.508 ± 0.254)</td>
</tr>
<tr>
<td>RF1111</td>
<td>0.110+0.025 -0.010 (2.79 +0.64 -0.25)</td>
<td>0.110 ± 0.015 (2.79 ± 0.381)</td>
<td>0.102 (2.59)</td>
<td>0.020 ± 0.010 (0.508 ± 0.254)</td>
</tr>
<tr>
<td>1206</td>
<td>0.125 ± 0.008 (3.18 ± 0.203)</td>
<td>0.060 ± 0.008 (1.52 ± 0.203)</td>
<td>0.064 (1.63)</td>
<td>0.020 ± 0.010 (0.508 ± 0.254)</td>
</tr>
<tr>
<td>1210</td>
<td>0.125 ± 0.008 (3.18 ± 0.203)</td>
<td>0.100 ± 0.008 (2.54 ± 0.203)</td>
<td>0.065 (1.65)</td>
<td>0.020 ± 0.010 (0.508 ± 0.254)</td>
</tr>
<tr>
<td>1515</td>
<td>0.150 ± 0.015 (3.81 ± 0.381)</td>
<td>0.150 ± 0.015 (3.81 ± 0.381)</td>
<td>0.130 (3.30)</td>
<td>0.030 ± 0.015 (0.762 ± 0.381)</td>
</tr>
<tr>
<td>1808</td>
<td>0.180 ± 0.012 (4.57 ± 0.305)</td>
<td>0.080 ± 0.008 (2.03 ± 0.203)</td>
<td>0.065 (1.65)</td>
<td>0.024 ± 0.014 (0.610 ± 0.356)</td>
</tr>
<tr>
<td>1812</td>
<td>0.180 ± 0.012 (4.57 ± 0.305)</td>
<td>0.125 ± 0.008 (3.18 ± 0.203)</td>
<td>0.065 (1.65)</td>
<td>0.024 ± 0.014 (0.610 ± 0.356)</td>
</tr>
<tr>
<td>1825</td>
<td>0.180 ± 0.012 (4.57 ± 0.305)</td>
<td>0.250 ± 0.015 (6.35 ± 0.381)</td>
<td>0.080 (2.03)</td>
<td>0.024 ± 0.014 (0.610 ± 0.356)</td>
</tr>
<tr>
<td>2020</td>
<td>0.200 ± 0.015 (5.08 ± 0.381)</td>
<td>0.200 ± 0.015 (5.08 ± 0.381)</td>
<td>0.180 (4.57)</td>
<td>0.024 ± 0.014 (0.610 ± 0.356)</td>
</tr>
<tr>
<td>2221</td>
<td>0.220 ± 0.015 (5.59 ± 0.381)</td>
<td>0.210 ± 0.015 (5.33 ± 0.381)</td>
<td>0.080 (2.03)</td>
<td>0.030 ± 0.015 (0.762 ± 0.381)</td>
</tr>
<tr>
<td>2225</td>
<td>0.220 ± 0.015 (5.59 ± 0.381)</td>
<td>0.250 ± 0.015 (6.35 ± 0.381)</td>
<td>0.080 (2.03)</td>
<td>0.030 ± 0.015 (0.762 ± 0.381)</td>
</tr>
<tr>
<td>2520</td>
<td>0.250 ± 0.015 (6.35 ± 0.381)</td>
<td>0.200 ± 0.015 (5.08 ± 0.381)</td>
<td>0.180 (4.57)</td>
<td>0.030 ± 0.015 (0.762 ± 0.381)</td>
</tr>
<tr>
<td>RF2525</td>
<td>0.230 +0.020 -0.012 (5.84 +0.51 -0.30)</td>
<td>0.250 ± 0.015 (6.35 ± 0.381)</td>
<td>0.165 (4.19)</td>
<td>0.030 ± 0.015 (0.762 ± 0.381)</td>
</tr>
<tr>
<td>3333</td>
<td>0.330 ± 0.017 (8.38 ± 0.432)</td>
<td>0.330 ± 0.017 (8.38 ± 0.432)</td>
<td>0.250 (6.35)</td>
<td>0.030 ± 0.015 (0.762 ± 0.381)</td>
</tr>
<tr>
<td>3530</td>
<td>0.350 ± 0.018 (8.89 ± 0.457)</td>
<td>0.300 ± 0.015 (7.62 ± 0.381)</td>
<td>0.250 (6.35)</td>
<td>0.030 ± 0.015 (0.762 ± 0.381)</td>
</tr>
<tr>
<td>4040</td>
<td>0.400 ± 0.020 (10.2 ± 0.508)</td>
<td>0.400 ± 0.020 (10.2 ± 0.508)</td>
<td>0.300 (7.62)</td>
<td>0.040 ± 0.020 (1.02 ± 0.508)</td>
</tr>
<tr>
<td>4540</td>
<td>0.450 ± 0.023 (11.4 ± 0.584)</td>
<td>0.400 ± 0.020 (10.2 ± 0.508)</td>
<td>0.300 (7.62)</td>
<td>0.040 ± 0.020 (1.02 ± 0.508)</td>
</tr>
<tr>
<td>5440</td>
<td>0.540 ± 0.027 (13.7 ± 0.686)</td>
<td>0.400 ± 0.020 (10.2 ± 0.508)</td>
<td>0.300 (7.62)</td>
<td>0.040 ± 0.020 (1.02 ± 0.508)</td>
</tr>
<tr>
<td>5550</td>
<td>0.550 ± 0.028 (14.0 ± 0.711)</td>
<td>0.500 ± 0.025 (12.7 ± 0.635)</td>
<td>0.300 (7.62)</td>
<td>0.040 ± 0.020 (1.02 ± 0.508)</td>
</tr>
<tr>
<td>6560</td>
<td>0.650 ± 0.033 (16.5 ± 0.838)</td>
<td>0.600 ± 0.030 (15.2 ± 0.762)</td>
<td>0.300 (7.62)</td>
<td>0.040 ± 0.020 (1.02 ± 0.508)</td>
</tr>
<tr>
<td>7565</td>
<td>0.750 ± 0.038 (19.1 ± 0.965)</td>
<td>0.650 ± 0.033 (16.5 ± 0.838)</td>
<td>0.300 (7.62)</td>
<td>0.040 ± 0.020 (1.02 ± 0.508)</td>
</tr>
</tbody>
</table>

* Non standard thicknesses are available - consult the sales office for details.