Dielectric characteristics ### **Class I Dielectrics** Multilayer Ceramic Capacitors are generally divided into classes which are defined by the capacitance temperature characteristics over specified temperature ranges. These are designated by alpha numeric codes. Code definitions are summarised below and are also available in the relevant national and international specifications. Capacitors within this class have a dielectric constant range from 10 to 100. They are used in applications which require ultra stable dielectric characteristics with negligible dependence of capacitance and dissipation factor with time, voltage and frequency. They exhibit the following characteristics:- - a) Time does not significantly affect capacitance and dissipation factor (Tan δ) no ageing. - b) Capacitance and dissipation factor are not affected by voltage. - c) Linear temperature coefficient. | | | Class I Dielectrics | | | | | | | | | | | | | | |---------------------------------------|-----------------------------|-----------------------------------|--------------------|--------------------|---------------------------------------|--|---|--------------------|--|--|--|--|--|--|--| | | | COG/NPO
(Porcelain) | P90
(Porcelain) | C0G/ | NP0 | X8G | Class I
High Temperature | | | | | | | | | | | | Ultra stable | Ultra stable | Ultra s | stable | Ultra stable | Ultra stable | | | | | | | | | | Dielectric | IECQ-CECC | - | - | 1B/ | CG | - | - | - | | | | | | | | | classifications | EIA | COG/NP0 | P90 | C0G/ | NP0 | X8G | - | - | | | | | | | | | | MIL | - | - | CG (| BP) | - | - | - | | | | | | | | | Ordering code | DLI | CF | AH | - | - | - | - | - | | | | | | | | | | Novacap | - | - | - | N | - | F | D, RD | | | | | | | | | Ordering code | Syfer | - | - | Q, U | С | Н | - | G | | | | | | | | | | Voltronics | F | Н | Q | - | - | - | - | | | | | | | | | Rated
temperature
range | | -55°C to
+125°C | -55°C to
+125°C | -55°C to
+125°C | -55°C to
+125°C | -55°C to
+150°C | -55°C to
+160°C | -55°C to
+200°C | | | | | | | | | Maximum capacitance | No DC voltage applied | 0 ± 15 ppm/°C | ± 20 ppm/°C | 0 ± 30 ppm/°C | ± 30 ppm/°C | 0 ± 30 ppm/°C | 0 ± 30 ppm/°C | 0 ± 30 ppm/°C | | | | | | | | | change over
temperature
range | Rated DC
voltage applied | | | | - | | | | | | | | | | | | Tangent of loss angle (tan δ) | | ≤0. | .05 | ≤0.0005
@1MHz | >50pF
≤50pF 0.00 | ≤0.0015
15 (<u>15</u> + 0.7)
Cr | ≤0.001 | | | | | | | | | | Insulation resistance (Ri) | Time constant
(Ri x Cr) | @25°C = 1
@125°C = 1 | | (wl | 100GΩ or 1000 s nichever is the lea | st) | @25°C = 100 GΩ or 100 ΩF
@ 160 °C & 200 °C = 1 GΩ or 10 ΩF
(whichever is the least) | | | | | | | | | | | Cr <4.7pF | ±0.05pF, ±0.10pF, ±0.25pF, ±0.5pF | | | | | | | | | | | | | | | Capacitance
Tolerance | Cr ≥4.7 to <10pF | ±0.10pF, ±0.25pF, ±0.5pF | | | | | | | | | | | | | | | | Cr ≥10pF | ±1%, ±2%, ±5%, ±10% | | | | | | | | | | | | | | | Dielectric | <u>≤</u> 200V | | | 2.5 ti | mes | | 2.5 times | | | | | | | | | | strength
Voltage applied | >200V to
<500V | | 2.5 times | Rated volta | ge + 250V | | Rated voltage + 250V | | | | | | | | | | for 5 seconds.
Charging | 500V to <u><</u> 1kV | 2.5 times | | 1.5 ti | mes | 2.5 times | 1.5 times | | | | | | | | | | current limited to 50mA | >1kV to
≤1.2kV | | N/A | 1.25 t | imes | | 1.25 times | | | | | | | | | | maximum. | >1.2kV | | | 1.2 ti | mes | | 1.2 times | | | | | | | | | | Cl: | Chip | 55/125/56 | 55/125/56 | 55/12 | 5/56 | - | | - | | | | | | | | | Climatic
category (IEC) | Dipped | - | - | - | 55/125/21 | - | | • | | | | | | | | | | Discoidal | - | - | - | 55/125/56 | - | | | | | | | | | | | Ageing characteristic (Typical) | | | | | Zero | | | | | | | | | | | | Approvals | Syfer Chip | - | - | - | QC-32100 | - | - | | | | | | | | | ## **Dielectric characteristics** ### **Class II Dielectrics** Capacitors of this type have a dielectric constant range of 1000-4000 and also have a non-linear temperature characteristic which exhibits a dielectric constant variation of less than $\pm 15\%$ (2R1) from its room temperature value, over the specified temperature range. Generally used for by-passing (decoupling), coupling, filtering, frequency discrimination, DC blocking and voltage transient suppression with greater volumetric efficiency than Class I units, whilst maintaining stability within defined limits. Capacitance and dissipation factor are affected by:- - a) Time (Ageing) - b) Voltage (AC or DC) - c) Frequency | | | Clas | ss II Dielect | rics | | | | | | | | | |---------------------|--|----------------------------|---------------------------------|--------------------|--------------------|--------------------|--------------------------|---|--|--|--|--| | X5R | X7R | | | X8R | | ss II
nperature | | | | | | | | Stable | | Stable | | Stable | Sta | ble | | | | | | | | - | 2C1 | 2R1 | 2X1 | - | - | - | IECQ-CECC | Dielectric | | | | | | X5R | - | X7R | - | X8R | - | - | EIA | classifications | | | | | | - | BZ | - | BX | - | - | - | MIL | | | | | | | - | - | - | - | - | - | - | DLI | | | | | | | BW | - | В | Х | S | G | E, RE | Novacap | Ordering code | | | | | | Р | R X B | | | | - | Χ | Syfer | Ordering code | | | | | | - | - | X | - | - | - | - | Voltronics | | | | | | | -55°C to
+85°C | | -55°C to
+125°C | | -55°C to
+150°C | -55°C to
+160°C | -55°C to
+200°C | | Rated
temperature
range | | | | | | ±15% | ±15% | ±15% ±15% ±1 | | ±15% | +15 -40% +15 -65% | | No DC voltage applied | Maximum capacitance change over | | | | | | - | +15 -45% | - | +15 -25% | - | - | - | Rated DC voltage applied | temperature range | | | | | | ≤ 0.025
Typical* | | >25V <0.025
<25V <0.035 | | ≤0.025 | <u>≤</u> 0. | 025 | | Tangent of loss angle (tan δ) | | | | | | | $100G\Omega$ or $1000s$ (whichever is the least) | | | | | | | | | | | | | | | Capacitance
Tolerance | | | | | | | | | | | | | | 2.5 times | | | 2.5 t | imes | <u>≤</u> 200V | Dielectric | | | | | | 2.5 times | Ra | ated voltage + 250 | 0V | 25# | Rated volta | age + 250V | >200V to
<500V | strength Voltage applied for 5 seconds. | | | | | | 2.5 unies | | 1.5 times | | 2.5 times | 1.5 t | imes | 500V to <1kV | Charging current limited to 50mA | | | | | | | | 1.2 times | | | 1.2 t | imes | ≥1kV | maximum. | | | | | | 55/85/56 | | 55/125/56 | | 55/150/56 | | Chip | Climatic | | | | | | | - | | 55/125/21 | | - | | Dipped | Climatic category (IEC) | | | | | | | - | | 55/125/56 | | - | | - | Discoidal | | | | | | | 5%
Typical | | | Ageing characteristic (Typical) | | | | | | | | | | | - | QC-32100 | - | - | - | QC-32100 | - | Syfer Chip | Approvals | | | | | | | | | | | | | | | | | | | $[\]ensuremath{^{*}}$ Refer to page 34 for details of Dissipation Factor. # **Dielectric termination combinations** | | | Palladium Silver | Palladium Silver | Nickel Barrier (100% matte tin plating). Lead free | Nickel Barrier 90/10% tin/lead | Nickel Barrier Gold flash | FlexiCap Tm with Nickel Barrier
100% tin | FlexiCap Tm with Nickel Barrier
90/10% tin/lead | FlexiCap™ with Copper Barrier
100% tin | FlexiCap™ Ag Layer, 400-u-in Cu
barrier 200-u-in Sn Plate | FlexiCap [™] with Copper Barrier
90/10% tin/lead | Copper Barrier 100% tin | Ag Layer, 400-500u-in Cu barrier,
200-u-in 90/10 Sn Plate | Copper Barrier 90/10% tin/lead | Solderable Silver | Solderable Palladium Silver | |---|--------------------------|------------------|------------------|--|--------------------------------|---------------------------|--|---|---|--|--|-------------------------|--|--------------------------------|-------------------|-----------------------------| | | | | RoHS | RoHS | | RoHS | RoHS | | RoHS | | | RoHS | | | RoHS | RoHS | | Recommended for Solder
Attachment | | | | • | • | | • | • | • | • | • | • | • | • | • | • | | Recommended for Conductive Epoxy Attachment | | • | • | | | • | | | | | | | | | | | | | DLI | - | - | Z | U | s | - | - | - | - | - | - | - | - | - | - | | Termination | Novacap | Р | PR | N | Y | NG | С | D | _ | _ | _ | В | _ | E | s | K | | ordering code: | Syfer | - | F | J | A | _ | Y | н | 3 | _ | 5 | 2 | _ | 4 | | _ | | Dialactuia | | | | | ^ | | • | | J | | • | | | - | | | | Dielectric | Code DLI - UL | | | | | • | | | | | | | | | | | | COG - Hi Q/Low ESR | Syfer - Q, U | | | • | • | | | | | | | | | | | | | COG - Hi Q/Low ESR BME | Syfer - H | | | • | | | | | | | | | | | | | | COO TH Q/LOW LOCK DITE | Novacap - N/RN | • | • | | • | • | • | • | | | | | | | • | • | | COG/NPO | Syfer - A | | | • | | | • | | | | | | | | | | | | Syfer - C, F | | • | | • | | • | • | | | | | | | | | | COG/NPO - BME | Syfer - G, K | | | • | _ | | | | | | | | | | | | | , | Novacap - M | • | • | | | | | | | | | • | | • | | • | | COG/NPO - | Syfer - C, Q | | | | | | | | • | | • | • | | • | | | | Non-Mag | Voltronics - Q | | • | | | | | | | • | | • | • | | | | | | Syfer - P | | • | • | • | | • | • | | | | | | | | | | X5R | Novacap - BW | | | • | • | • | | | | | | | | | | | | | Novacap - B/RB | • | • | • | • | • | • | • | | | | | | | • | • | | X7R | Syfer - E | | | | | | • | | | | | | | | | | | | Syfer - X, D | | • | • | • | | • | • | | | | | | | | | | | Novacap - BB | | | • | • | • | | | | | | | | | | | | X7R - BME | Syfer - J | | | • | | | • | | | | | | | | | | | | Syfer - S | | | | | | • | | | | | | | | | | | вх | Novacap - X | • | • | • | • | • | • | • | | | | | | | • | • | | DA | Syfer - B | | • | • | • | | • | • | | | | | | | | | | R2D (Pulse Energy) | Novacap - R | • | • | | | | | | | | | | | | | • | | BZ | Syfer - R | | • | • | • | | • | • | | | | | | | | | | X7R - Non-Mag | Novacap - C | • | • | | | | | | | | | • | | • | | • | | | Syfer - X | | | | | | | | • | | • | | | | | | | | Voltronics - X | | • | | | | | | • | • | | | • | | | | | X8R | Novacap - S | • | • | • | • | | • | • | | | | | | | • | • | | | Syfer - N | | | | | | • | | | | | | | | | | | 000 (ND0 (4 0000) | Syfer - T | | | | | | • | | | | | | | | | | | COG/NPO (160°C) | Novacap - F | • | • | • | • | | • | • | | | | | | | • | • | | COG/NPO (200°C) | Novacap - D | | | | | | | | | | | | | | • | • | | COG/NPO (200°C) | Novacap - RD | | | • | | | | | | | | | | | | | | Class II (1600C) | Syfer - G
Novacap - G | • | • | • | | | • | • | | | | | | | | | | Class II (160°C) | Novacap - G | | | | • | | | | | | | | | | • | • | | | TOTALCOD L | | | | | | | | | | | | | | | |