IPC/JEDEC J-STD-020D

Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices
Syfer Surface Mount Capacitor Test Results

1.0 Introduction ...2
2.0 Moisture Sensitivity Classification Process ...2
 2.1 Initial Electrical Test ...2
 2.2 Initial Visual ...2
 2.3 Bake ..2
 2.4 Moisture Soak ..2
 2.5 Reflow x 3 ...3
 2.6 Final External Visual ...3
 2.7 Final Electrical Test ...3
 2.8 Final Internal Visual Examination ..3
3.0 Failure Criteria ..4
4.0 Syfer Test Summary ..5
 Results ...5
Appendix 1 – Capacitor Photographs ..6
1.0 Introduction

The purpose of J-STD-020 is to identify the moisture sensitivity classification level of non-hermetic solid state surface mount devices (SMDs). The classification level enables proper packaging, storage and handled to prevent potential damage as a result of moisture-induced stress during soldering operations and/or repair operations.

Moisture Sensitivity Levels defined by J-STD-020

<table>
<thead>
<tr>
<th>Level</th>
<th>Floor Life</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(1)</td>
<td>Unlimited(2)</td>
<td>≤30°C/ 85%RH</td>
</tr>
<tr>
<td>2</td>
<td>1 year</td>
<td>≤30°C/ 60%RH</td>
</tr>
<tr>
<td>2a</td>
<td>4 weeks</td>
<td>≤30°C/ 60%RH</td>
</tr>
<tr>
<td>3</td>
<td>168 hours</td>
<td>≤30°C/ 60%RH</td>
</tr>
<tr>
<td>4</td>
<td>72 hours</td>
<td>≤30°C/ 60%RH</td>
</tr>
<tr>
<td>5</td>
<td>48 hours</td>
<td>≤30°C/ 60%RH</td>
</tr>
<tr>
<td>5a</td>
<td>24 hours</td>
<td>≤30°C/ 60%RH</td>
</tr>
<tr>
<td>6</td>
<td>Time On Label (TOL)</td>
<td>≤30°C/ 60%RH</td>
</tr>
</tbody>
</table>

Notes:
1. If a device passes level 1, it is classified as not being moisture sensitive and does not require dry pack.
2. Unlimited floor life refers specifically to moisture sensitivity related to components cracking during soldering operations. Other factors may affect, for example, component solderability. Syfer recommended shelf life and storage conditions are available at www.syfer.com

Copies of J-STD-020 are available at http://www.jedec.org

2.0 Moisture Sensitivity Classification Process

2.1 Initial Electrical Test

Capacitors tested for:
- Capacitance.
- Dissipation Factor.
- Insulation resistance.
- Dielectric Withstand Voltage.

2.2 Initial Visual

Capacitors externally visually examined using 50x magnification.

2.3 Bake

Capacitors subjected to minimum 24 hours at 125°C +5/-0°C.

2.4 Moisture Soak

Capacitors placed in a humidity chamber at 85°C/ 85%RH for 168 hours.
2.5 **Reflow x 3**

Within 15 minutes to maximum 4 hours after the moisture soak, capacitors subjected to 3x reflow soldering profile.

Reflow soldering profile used by Syfer:

![Reflow Soldering Profile](image)

2.6 **Final External Visual**

Capacitors externally visually examined using 50x magnification.

2.7 **Final Electrical Test**

Capacitors tested for:
- Capacitance
- Dissipation Factor
- Insulation resistance
- Dielectric Withstand Voltage

2.8 **Final Internal Visual Examination**

J-STD-020 includes a final acoustic microscopy stage after the final electrical test with any component identified with a crack being evaluated by sectioning.
Acoustic microscopy may not identify all cracks within capacitors and to verify that no cracks are present, Syfer has sectioned all capacitors tested. Sectioning is conducted by mounting capacitors in high edge retention potting compound and then grinding through the capacitors. During the grinding process, the capacitors have been frequently examined using up to 200x magnification checking for cracks.

![Capacitor Construction Diagram](image)

Figure 1 - Capacitor construction diagram

3.0 Failure Criteria

If 1 or more capacitor in the test sample fails then the whole family group is considered to have failed the tested MSL (Moisture Sensitivity Level).

A capacitor is considered to have failed if it exhibits any of the following after the 168 hour moisture soak and subsequent 3x reflow processes:

- Crack observed during the Final External Visual examination
- Final Electrical Test failure
- Crack observed during the Final Internal Visual examination
4.0 Syfer Test Summary

Moisture/ reflow sensitivity classification has been conducted by Syfer based on a family sampling approach in relation to:

- Capacitor case size
- Dielectric classification
- Termination type

Results

<table>
<thead>
<tr>
<th>Capacitor Case Size</th>
<th>Dielectric Type</th>
<th>Termination Type(^1)</th>
<th>Sample Size</th>
<th>Pre Moisture Soak and 3x Reflow</th>
<th>Post Moisture Soak/ 3x Reflow</th>
<th>Appendix 1 Photo Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1 Initial Electrical Tests</td>
<td>2.2 Initial Visual</td>
<td>2.6 Final External Visual</td>
</tr>
<tr>
<td>0603</td>
<td>C0G</td>
<td>J</td>
<td>25</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>0603</td>
<td>X7R</td>
<td>J</td>
<td>25</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>0603</td>
<td>X7R</td>
<td>Y</td>
<td>25</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>1210</td>
<td>C0G</td>
<td>J</td>
<td>25</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>1210</td>
<td>X7R</td>
<td>J</td>
<td>25</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>1210</td>
<td>X7R</td>
<td>Y</td>
<td>25</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>2225</td>
<td>C0G</td>
<td>J</td>
<td>25</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>2225</td>
<td>X7R</td>
<td>J</td>
<td>25</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>2225</td>
<td>X7R</td>
<td>Y</td>
<td>25</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Notes:

1. Termination type refers to the code letter used in Syfer part numbers.
 - J: Silver base with Nickel Barrier (100% matte tin Plating).
 - Y: **FlexiCap**\(^a\) termination base with Ni Barrier (100% matte tin plating).

All capacitors tested passed Moisture Sensitivity Level (MSL) 1 and are not classified as being moisture sensitive. The capacitors supplied by Syfer do not require dry pack.
Appendix 1 – Capacitor Photographs

The following photographs have been taken after the moisture soak and 3x reflow processes and are representative of the capacitors subjected to the moisture/reflow sensitivity classification tests.

0603 C0G J Termination
Ref 1. Final External Visual

Ref 2. Final Internal Visual (100x mag)

0603 X7R J Termination
Ref 3. Final External Visual

Ref 4. Final Internal Visual (100x mag)

0603 X7R Y Termination
Ref 5. Final External Visual

Ref 6. Final Internal Visual (100x mag)
1210 C0G J Termination
Ref 7. Final External Visual

Ref 8. Final Internal Visual (50x mag)

1210 X7R J Termination
Ref 9. Final External Visual

Ref 10. Final Internal Visual (50x mag)

1210 X7R Y Termination
Ref 11. Final External Visual

Ref 12. Final Internal Visual (50x mag)
2225 C0G J Termination
Ref 13. Final External Visual

2225 X7R J Termination
Ref 15. Final External Visual

2225 X7R Y Termination
Ref 17. Final External Visual

Ref 14. Final Internal Visual (50x mag)

Ref 16. Final Internal Visual (50x mag)

Ref 18. Final Internal Visual (50x mag)